2005年04月

55-9-2-p43-104

<ラスカー - ライヒヘルム  シカゴトリビューン1901>

P43

<黒キングa7のあとのバリエーション>

 図104。
 白番。
104.jpg

 白キングは一手でc4の狙いに移動出来るb3とし、ヘテロドックス・オポジションをとることで満足する(図105)。

55-9-2-p43-103

<ラスカー - ライヒヘルム  シカゴトリビューン1901>

P43

<主要領域での解決>

 白キングが主要領域内でb2を占拠したとすると、ヘテロドックス・オポジションにするためには黒キングをa8(右隣の列で、別の色のマス目)に置く。黒番(図103)。
103.jpg

 3つのバリエーションが考えられる。

 1 黒a7
 2 黒b7
 3 黒b8

55-9-2-p42-102

<ラスカー - ライヒヘルム  シカゴトリビューン1901>

P42


<主要領域におけるヘテロドックス・オポジションの法則:
 手番でない白キングが、黒キングの占拠した縦列の右の列におり、反対色のマス目にあればヘテロドックス・オポジションをとっていることになる>

 例えば、図102。黒が手番。白キングはヘテロドックス・オポジションにある。なぜなら、白キングは黒キングの列の右隣の列にあり、反対色のマス目にいるから。
102.jpg

 こうしたオポジションを、<ナイトの動き>の型におけるオポジションと呼ぼう。ただし、この法則は右隣の列にあるときだけ、正確に有効である。

-----------------------------
<いとう註:<ナイトの動き>(Knight's move)は、おそらくナイトが動く度に反対色に移動するという性質から来ていると思われる。マイケル・フランクスの名曲『nightmoves』はこれにかかっている題名なのかも……とテンションがあがっていると妄想癖が……>

55-9-2-p42-101

<ラスカー - ライヒヘルム  シカゴトリビューン1901>

P42

<主要領域とヘテロドックス・オポジション>
101.jpg

 考えてみると、2つの主要領域は同じ大文字でしるされたマス目を、互いに「折ることによって重ね合わせる」特性を持っている。この重なりはa5b5c5等々の中心を通る水平線を蝶つがいとする。

 この奇妙な符号を完全なものとするためには、黒の領域を白領域に折り重ねたあと、縦列ひとつ分だけ右に移動させることが必要である。

 こうした重ね合わせの特性のおかげで、このエンディングに特有のヘテロドックス・オポジションの一般法則を確立することが出来よう。

 例えば、b3はa7とヘテロドックス・オポジションにある。なぜなら、2つのマス目はa5からh5を結ぶ線(蝶つがい)から等距離であり、右に隣接した縦列にあるから。また、2つのマス目が別々の色であることもみてとれる。したがって:

----------------------------------
<いとう註:知らぬ間に、O君の訳してくれた部分を終え、一人旅に入っていた。
 そして、デュシャンとチェスを合わせ考える者にとって刺激的な項目が目の前にある。
「折ることによって重ね合わせる」(superposition by folding)。
 これはHPでの『55ノート』でも書き散らしたことだが、この重ね合わせは鏡によって生じる像と同じであり、手袋が実は同じ向きでは重ならない(対掌性)ことと同一である。デュシャンらはこの対掌性を「奇妙な符号」(coincidence)と呼んでいる。
 僕の妄想では、つまり各主要領域はあたかも同一の形のように見えながら、実は同じ平面では重ならない単独的な存在だということである。折り重ねることで、裏表を接すること(言うなれば“反対平面”に移動しなければ、2つの形は同一化出来ないのだ。手袋が同一平面に重ならないように。この対掌性の不思議は、どこか四次元的である。
 また、ここでのヘテロドックス・オポジションは互いのマス目の色を「反対色」と指定している。
 いわば、主要領域は色にとっての鏡像ともなるのである>

55-9-2-p42-100

<ラスカー - ライヒヘルム  シカゴトリビューン1901>

P42

<主要領域とヘテロドックス・オポジション>
100.jpg

 図100。
 白キングの主要領域はd3(B)、c3(C)、b3(D)、c2(E)、b2(F)、d2(G)による長方形で構成され、黒キングの主要領域はc7(B)、b7(C)、a7(D)、b8(E)、a8(F)、c8(G)による長方形であらわされる。

 c4、b6の2つのマス目は単独のものとしてきわだっており、両キングの極b5にとっての決定的なポジションにあって、適切に言うならば主要領域ではない。

---------------------------
<いとう註:飛び出たc4、b6は……正式な主要領域ではない……??>
livedoor プロフィール
タグクラウド
QRコード
QRコード
  • ライブドアブログ